Pair-correlated stereodynamics for diatom-diatom rotational energy transfer: NO(A2Σ+) + N2.

نویسندگان

  • Thomas F M Luxford
  • Thomas R Sharples
  • Kenneth G McKendrick
  • Matthew L Costen
چکیده

We have performed a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with N2 and have measured rotational angular momentum polarization dependent images of product NO(A) rotational levels N' = 3 and 5-11 for collisions at an average energy of 797 cm-1. We present an extension of our previously published [T. F. M. Luxford et al., J. Chem. Phys. 145, 174 304 (2016)] image analysis which includes the effect of rotational excitation of the unobserved collision partner and critically evaluate this methodology. We report differential cross sections and angle-resolved angular momentum alignment moments for NO(A) levels N' = 3 and 5-11 as a function of the rotational excitation of the coincident N2 partner. The scattering dynamics of NO(A) + N2 share similarities with those previously reported for NO(A) + Ne and Ar, although with detailed differences. We use comparison of the measurements reported here to the scattering of NO(A) with Ne, and the known NO(A)-Ne potential energy surface, to draw conclusions about the previously unknown NO(A)-N2 potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental testing of ab initio potential energy surfaces: Stereodynamics of NO(A2Σ+) + Ne inelastic scattering at multiple collision energies.

We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm-1, and N' = ...

متن کامل

An analytic model of the stereodynamics of rotationally inelastic molecular collisions.

We develop an analytic model of vector correlations in rotationally inelastic atom-diatom collisions and test it against the much examined Ar-NO (X(2)Pi) system. Based on the Fraunhofer scattering of matter waves, the model furnishes complex scattering amplitudes needed to evaluate the polarization moments characterizing the quantum stereodynamics. The analytic polarization moments are found to...

متن کامل

s . cl as s - ph ] 1 9 M ay 2 00 5 Quasiresonance

The concept of quasiresonance was introduced in connection with inelastic collisions between one atom and a vibro-rotationally excited diatomic molecule. In its original form, the collisions induce quasiresonant transfer of energy between the internal degrees of freedom of the diatom: there is a surprisingly accurate low order rational value for the ratio of the changes in the vibrational and r...

متن کامل

Quantum state-to-state reaction probabilities for the H1H2O ̃H21OH reaction in six dimensions

A time-dependent wave packet method has been employed to calculate the state-to-state reaction probability for the H1H2O~0,0,0!→H2~v1 , j1!1OH~v2 , j2! reaction for J50 and initial nonrotating H2O on the modified Schatz–Elgersman potential energy surface in full six dimensions ~6D!. Starting from a wave packet for an atom–triatom asymptotic state in atom–triatom Jacobi coordinates, we transfer ...

متن کامل

A new approximation for atom-diatom rotational-relaxation cross sections.

A semiclassical approximation to the S matrix of the infinite-order-sudden approximation is introduced. This is employed to yield for the energy-transfer effective cross section a purely classical approximation, analogous to the Mason-Monchick approximation [J. Chem. Phys. 36, 1622 (1962)] for traditional collision integrals. Constraints on energy and on angular momentum transfer are included. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 147 1  شماره 

صفحات  -

تاریخ انتشار 2017